Generalized partially linear models on Riemannian manifolds
Amelia Simó,
M. Victoria Ibáñez,
Irene Epifanio and
Vicent Gimeno
Journal of the Royal Statistical Society Series C, 2020, vol. 69, issue 3, 641-661
Abstract:
We introduce generalized partially linear models with covariates on Riemannian manifolds. These models, like ordinary generalized linear models, are a generalization of partially linear models on Riemannian manifolds that allow for scalar response variables with error distribution models other than a normal distribution. Partially linear models are particularly useful when some of the covariates of the model are elements of a Riemannian manifold, because the curvature of these spaces makes it difficult to define parametric models. The model was developed to address an interesting application: the prediction of children's garment fit based on three‐dimensional scanning of their bodies. For this reason, we focus on logistic and ordinal models and on the important and difficult case where the Riemannian manifold is the three‐dimensional case of Kendall's shape space. An experimental study with a well‐known three‐dimensional database is carried out to check the goodness of the procedure. Finally, it is applied to a three‐dimensional database obtained from an anthropometric survey of the Spanish child population. A comparative study with related techniques is carried out.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/rssc.12411
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:69:y:2020:i:3:p:641-661
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().