Inference for extreme values under threshold‐based stopping rules
Anna Maria Barlow,
Chris Sherlock and
Jonathan Tawn
Journal of the Royal Statistical Society Series C, 2020, vol. 69, issue 4, 765-789
Abstract:
There is a propensity for an extreme value analysis to be conducted as a consequence of a large flooding event. This timing of the analysis introduces bias and poor coverage probabilities into the associated risk assessments and leads subsequently to inefficient flood protection schemes. We explore these problems through studying stochastic stopping criteria and propose new likelihood‐based inferences that mitigate against these difficulties. Our methods are illustrated through the analysis of the river Lune, following its experiencing the UK's largest ever measured flow event in 2015. We show that without accounting for this stopping feature there would be substantial overdesign in response to the event.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/rssc.12420
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:69:y:2020:i:4:p:765-789
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().