Markov switching modelling of shooting performance variability and teammate interactions in basketball
Marco Sandri,
Paola Zuccolotto and
Marica Manisera
Journal of the Royal Statistical Society Series C, 2020, vol. 69, issue 5, 1337-1356
Abstract:
In basketball, measures of individual player performance provide critical guidance for a broad spectrum of decisions related to training and game strategy. However, most studies on this topic focus on performance level measurement, neglecting other important factors, such as performance variability. Here we model shooting performance variability by using Markov switching models, assuming the existence of two alternating performance regimes related to the positive or negative synergies that specific combinations of players may create on the court. The main goal of this analysis is to investigate the relationships between each player's performance variability and team line‐up composition by assuming shot‐varying transition probabilities between regimes. Relationships between pairs of players are then visualized in a network graph, highlighting positive and negative interactions between teammates. On the basis of these interactions, we build a score for the line‐ups, which we show correlates with the line‐up's shooting performance. This confirms that interactions between teammates detected by the Markov switching model directly affect team performance, which is information that would be enormously useful to coaches when deciding which players should play together.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.1111/rssc.12442
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:69:y:2020:i:5:p:1337-1356
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().