EconPapers    
Economics at your fingertips  
 

Stacked inverse probability of censoring weighted bagging: A case study in the InfCareHIV Register

Pablo Gonzalez Ginestet, Ales Kotalik, David M. Vock, Julian Wolfson and Erin E. Gabriel

Journal of the Royal Statistical Society Series C, 2021, vol. 70, issue 1, 51-65

Abstract: We propose an inverse probability of censoring weighted (IPCW) bagging (bootstrap aggregation) pre‐processing that enables the application of any machine learning procedure for classification to be used to predict the cause‐specific cumulative incidence, properly accounting for right‐censored observations and competing risks. We consider the IPCW area under the time‐dependent ROC curve (IPCW‐AUC) as a performance evaluation metric. We also suggest a procedure to optimally stack predictions from any set of IPCW bagged methods. We illustrate our proposed method in the Swedish InfCareHIV register by predicting individuals for whom treatment will not maintain an undetectable viral load for at least 2 years following initial suppression. The R package stackBagg that implements our proposed method is available on Github.

Date: 2021
References: Add references at CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
https://doi.org/10.1111/rssc.12448

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:70:y:2021:i:1:p:51-65

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2021-05-12
Handle: RePEc:bla:jorssc:v:70:y:2021:i:1:p:51-65