Quantifying the trendiness of trends
Andreas Kryger Jensen and
Claus Thorn Ekstrøm
Journal of the Royal Statistical Society Series C, 2021, vol. 70, issue 1, 98-121
Abstract:
News media often report that the trend of some public health outcome has changed. These statements are frequently based on longitudinal data, and the change in trend is typically found to have occurred at the most recent data collection time point—if no change had occurred the story is less likely to be reported. Such claims may potentially influence public health decisions on a national level. We propose two measures for quantifying the trendiness of trends. Assuming that reality evolves in continuous time, we define what constitutes a trend and a change in trend, and introduce a probabilistic Trend Direction Index. This index has the interpretation of the probability that a latent characteristic has changed monotonicity at any given time conditional on observed data. We also define an index of Expected Trend Instability quantifying the expected number of changes in trend on an interval. Using a latent Gaussian process model, we show how the Trend Direction Index and the Expected Trend Instability can be estimated in a Bayesian framework, and use the methods to analyse the proportion of smokers in Denmark during the last 20 years and the development of new COVID‐19 cases in Italy from 24 February onwards.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/rssc.12451
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:70:y:2021:i:1:p:98-121
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().