Functional data analysis and visualisation of three‐dimensional surface shape
Stanislav Katina,
Liberty Vittert and
Adrian W. Bowman
Journal of the Royal Statistical Society Series C, 2021, vol. 70, issue 3, 691-713
Abstract:
The advent of high‐resolution imaging has made data on surface shape widespread. Methods for the analysis of shape based on landmarks are well established but high‐resolution data require a functional approach. The starting point is a systematic and consistent description of each surface shape and a method for creating this is described. Three innovative forms of analysis are then introduced. The first uses surface integration to address issues of registration, principal component analysis and the measurement of asymmetry, all in functional form. Computational issues are handled through discrete approximations to integrals, based in this case on appropriate surface area weighted sums. The second innovation is to focus on sub‐spaces where interesting behaviour such as group differences are exhibited, rather than on individual principal components. The third innovation concerns the comparison of individual shapes with a relevant control set, where the concept of a normal range is extended to the highly multivariate setting of surface shape. This has particularly strong applications to medical contexts where the assessment of individual patients is very important. All of these ideas are developed and illustrated in the important context of human facial shape, with a strong emphasis on the effective visual communication of effects of interest.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/rssc.12482
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:70:y:2021:i:3:p:691-713
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().