Likelihood‐free parameter estimation for dynamic queueing networks: Case study of passenger flow in an international airport terminal
Anthony Ebert,
Ritabrata Dutta,
Kerrie Mengersen,
Antonietta Mira,
Fabrizio Ruggeri and
Paul Wu
Journal of the Royal Statistical Society Series C, 2021, vol. 70, issue 3, 770-792
Abstract:
Dynamic queueing networks (DQN) model queueing systems where demand varies strongly with time, such as airport terminals. With rapidly rising global air passenger traffic placing increasing pressure on airport terminals, efficient allocation of resources is more important than ever. Parameter inference and quantification of uncertainty are key challenges for developing decision support tools. The DQN likelihood function is, in general, intractable and current approaches to simulation make likelihood‐free parameter inference methods, such as approximate Bayesian computation (ABC), infeasible since simulating from these models is computationally expensive. By leveraging a recent advance in computationally efficient queueing simulation, we develop the first parameter inference approach for DQNs. We demonstrate our approach with data of passenger flows in a real airport terminal, and we show that our model accurately recreates the behaviour of the system and is useful for decision support. Special care must be taken in developing the distance for ABC since any useful output must vary with time. We use maximum mean discrepancy, a metric on probability measures, as the distance function for ABC. Prediction intervals of performance measures for decision support tools are easily constructed using draws from posterior samples, which we demonstrate with a scenario of a delayed flight.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/rssc.12487
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:70:y:2021:i:3:p:770-792
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().