Economics at your fingertips  

A computationally efficient Bayesian seemingly unrelated regressions model for high‐dimensional quantitative trait loci discovery

Leonardo Bottolo, Marco Banterle, Sylvia Richardson, Mika Ala‐Korpela, Marjo‐Riitta Järvelin and Alex Lewin

Journal of the Royal Statistical Society Series C, 2021, vol. 70, issue 4, 886-908

Abstract: Our work is motivated by the search for metabolite quantitative trait loci (QTL) in a cohort of more than 5000 people. There are 158 metabolites measured by NMR spectroscopy in the 31‐year follow‐up of the Northern Finland Birth Cohort 1966 (NFBC66). These metabolites, as with many multivariate phenotypes produced by high‐throughput biomarker technology, exhibit strong correlation structures. Existing approaches for combining such data with genetic variants for multivariate QTL analysis generally ignore phenotypic correlations or make restrictive assumptions about the associations between phenotypes and genetic loci. We present a computationally efficient Bayesian seemingly unrelated regressions model for high‐dimensional data, with cell‐sparse variable selection and sparse graphical structure for covariance selection. Cell sparsity allows different phenotype responses to be associated with different genetic predictors and the graphical structure is used to represent the conditional dependencies between phenotype variables. To achieve feasible computation of the large model space, we exploit a factorisation of the covariance matrix. Applying the model to the NFBC66 data with 9000 directly genotyped single nucleotide polymorphisms, we are able to simultaneously estimate genotype–phenotype associations and the residual dependence structure among the metabolites. The R package BayesSUR with full documentation is available at https://cran.r‐

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

Page updated 2022-02-19
Handle: RePEc:bla:jorssc:v:70:y:2021:i:4:p:886-908