Economics at your fingertips  

A Bayesian nonparametric analysis of the 2003 outbreak of highly pathogenic avian influenza in the Netherlands

Rowland G. Seymour, Theodore Kypraios, Philip D. O’Neill and Thomas J. Hagenaars

Journal of the Royal Statistical Society Series C, 2021, vol. 70, issue 5, 1323-1343

Abstract: Infectious diseases on farms pose both public and animal health risks, so understanding how they spread between farms is crucial for developing disease control strategies to prevent future outbreaks. We develop novel Bayesian nonparametric methodology to fit spatial stochastic transmission models in which the infection rate between any two farms is a function that depends on the distance between them, but without assuming a specified parametric form. Making nonparametric inference in this context is challenging since the likelihood function of the observed data is intractable because the underlying transmission process is unobserved. We adopt a fully Bayesian approach by assigning a transformed Gaussian process prior distribution to the infection rate function, and then develop an efficient data augmentation Markov Chain Monte Carlo algorithm to perform Bayesian inference. We use the posterior predictive distribution to simulate the effect of different disease control methods and their economic impact. We analyse a large outbreak of avian influenza in the Netherlands and infer the between‐farm infection rate, as well as the unknown infection status of farms which were pre‐emptively culled. We use our results to analyse ring‐culling strategies, and conclude that although effective, ring‐culling has limited impact in high‐density areas.

Date: 2021
References: Add references at CitEc
Citations: Track citations by RSS feed

Downloads: (external link)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

Page updated 2021-11-19
Handle: RePEc:bla:jorssc:v:70:y:2021:i:5:p:1323-1343