Modelling the extremes of seasonal viruses and hospital congestion: The example of flu in a Swiss hospital
Setareh Ranjbar,
Eva Cantoni,
Valérie Chavez‐Demoulin,
Giampiero Marra,
Rosalba Radice and
Katia Jaton
Journal of the Royal Statistical Society Series C, 2022, vol. 71, issue 4, 884-905
Abstract:
Viruses causing flu or milder coronavirus colds are often referred to as ‘seasonal viruses’ as they tend to subside in warmer months. In other words, meteorological conditions tend to impact the activity of viruses, and this infor2mation can be exploited for the operational management of hospitals. In this study, we use 3 years of daily data from one of the biggest hospitals in Switzerland and focus on modelling the extremes of hospital visits from patients showing flu‐like symptoms and the number of positive flu cases. We propose employing a discrete generalized Pareto distribution for the number of positive and negative cases. Our modelling framework allows for the parameters of these distributions to be linked to covariate effects, and for outlying observations to be dealt with via a robust estimation approach. Because meteorological conditions may vary over time, we use meteorological and not calendar variations to explain hospital charge extremes, and our empirical findings highlight their significance. We propose a measure of hospital congestion and a related tool to estimate the resulting CaRe (Charge‐at‐Risk‐estimation) under different meteorological conditions. The relevant numerical computations can be easily carried out using the freely available GJRM R package. The empirical effectiveness of the proposed method is assessed through a simulation study.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/rssc.12559
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:71:y:2022:i:4:p:884-905
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().