Dynamic disease screening by joint modelling of survival and longitudinal data
Peihua Qiu and
Lu You
Journal of the Royal Statistical Society Series C, 2022, vol. 71, issue 5, 1158-1180
Abstract:
Sequential monitoring of dynamic processes is an active research area because of its broad applications in different industries and scientific research projects, including disease screening in medical research. In the literature, it has been shown that dynamic screening system (DySS) is a powerful tool for sequential monitoring of dynamic processes. To detect a disease (e.g. stroke) for a patient, existing DySS methods first estimate the regular longitudinal pattern of certain disease predictors (e.g. blood pressure, cholesterol level) from an in‐control (IC) dataset that contains observations of a group of non‐diseased people, and then compare the longitudinal pattern of the observed disease predictors of the given patient with the estimated regular longitudinal pattern. A signal of disease occurrence is triggered if their cumulative difference exceeds a certain level, facilitated by a built‐in control chart. In practice, a dataset containing longitudinal observations of the disease predictors of both non‐diseased and diseased people is often available in advance, from which it is possible to explore the relationship between the disease occurrence and the longitudinal pattern of the disease predictors. This relationship should be helpful for disease screening. In this paper, a new DySS method is suggested based on this idea. Numerical studies confirm that it can improve the existing DySS methods for disease screening.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/rssc.12573
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:71:y:2022:i:5:p:1158-1180
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().