EconPapers    
Economics at your fingertips  
 

Semi‐parametric time‐to‐event modelling of lengths of hospital stays

Yang Li, Hao Liu, Xiaoshen Wang and Wanzhu Tu

Journal of the Royal Statistical Society Series C, 2022, vol. 71, issue 5, 1623-1647

Abstract: Length of stay (LOS) is an essential metric for the quality of hospital care. Published works on LOS analysis have primarily focused on skewed LOS distributions and the influences of patient diagnostic characteristics. Few authors have considered the events that terminate a hospital stay: Both successful discharge and death could end a hospital stay but with completely different implications. Modelling the time to the first occurrence of discharge or death obscures the true nature of LOS. In this research, we propose a structure that simultaneously models the probabilities of discharge and death. The model has a flexible formulation that accounts for both additive and multiplicative effects of factors influencing the occurrence of death and discharge. We present asymptotic properties of the parameter estimates so that valid inference can be performed for the parametric as well as nonparametric model components. Simulation studies confirmed the good finite‐sample performance of the proposed method. As the research is motivated by practical issues encountered in LOS analysis, we analysed data from two real clinical studies to showcase the general applicability of the proposed model.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/rssc.12593

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:71:y:2022:i:5:p:1623-1647

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876

Access Statistics for this article

Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith

More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssc:v:71:y:2022:i:5:p:1623-1647