The saturated pairwise interaction Gibbs point process as a joint species distribution model
Ian Flint,
Nick Golding,
Peter Vesk,
Yan Wang and
Aihua Xia
Journal of the Royal Statistical Society Series C, 2022, vol. 71, issue 5, 1721-1752
Abstract:
In an effort to effectively model observed patterns in the spatial configuration of individuals of multiple species in nature, we introduce the saturated pairwise interaction Gibbs point process. Its main strength lies in its ability to model both attraction and repulsion within and between species, over different scales. As such, it is particularly well‐suited to the study of associations in complex ecosystems. Based on the existing literature, we provide an easy to implement fitting procedure as well as a technique to make inference for the model parameters. We also prove that under certain hypotheses the point process is locally stable, which allows us to use the well‐known ‘coupling from the past’ algorithm to draw samples from the model. Different numerical experiments show the robustness of the model. We study three different ecological data sets, demonstrating in each one that our model helps disentangle competing ecological effects on species' distribution.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/rssc.12596
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssc:v:71:y:2022:i:5:p:1721-1752
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9876
Access Statistics for this article
Journal of the Royal Statistical Society Series C is currently edited by R. Chandler and P. W. F. Smith
More articles in Journal of the Royal Statistical Society Series C from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().