Comonotonic Approximations for Optimal Portfolio Selection Problems
Jan Dhaene,
Steven Vanduffel (),
Marc Goovaerts,
R. Kaas and
D. Vyncke
Journal of Risk & Insurance, 2005, vol. 72, issue 2, 253-300
Abstract:
We investigate multiperiod portfolio selection problems in a Black and Scholes type market where a basket of 1 riskfree and m risky securities are traded continuously. We look for the optimal allocation of wealth within the class of “constant mix” portfolios. First, we consider the portfolio selection problem of a decision maker who invests money at predetermined points in time in order to obtain a target capital at the end of the time period under consideration. A second problem concerns a decision maker who invests some amount of money (the initial wealth or provision) in order to be able to fullfil a series of future consumptions or payment obligations. Several optimality criteria and their interpretation within Yaari's dual theory of choice under risk are presented. For both selection problems, we propose accurate approximations based on the concept of comonotonicity, as studied in Dhaene et al. (2002 a,b). Our analytical approach avoids simulation, and hence reduces the computing effort drastically.
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
https://doi.org/10.1111/j.1539-6975.2005.00123.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jrinsu:v:72:y:2005:i:2:p:253-300
Ordering information: This journal article can be ordered from
http://www.wiley.com/bw/subs.asp?ref=0022-4367
Access Statistics for this article
Journal of Risk & Insurance is currently edited by Joan T. Schmit
More articles in Journal of Risk & Insurance from The American Risk and Insurance Association Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().