Risk-Minimizing Reinsurance Protection For Multivariate Risks
K. C. Cheung,
K. C. J. Sung and
S. C. P. Yam
Journal of Risk & Insurance, 2014, vol. 81, issue 1, 219-236
Abstract:
type="main" xml:lang="en">
In this article, we study the problem of optimal reinsurance policy for multivariate risks whose quantitative analysis in the realm of general law-invariant convex risk measures, to the best of our knowledge, is still absent in the literature. In reality, it is often difficult to determine the actual dependence structure of these risks. Instead of assuming any particular dependence structure, we propose the minimax optimal reinsurance decision formulation in which the worst case scenario is first identified, then we proceed to establish that the stop-loss reinsurances are optimal in the sense that they minimize a general law-invariant convex risk measure of the total retained risk. By using minimax theorem, explicit form of and sufficient condition for ordering the optimal deductibles are also obtained.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://hdl.handle.net/ (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jrinsu:v:81:y:2014:i:1:p:219-236
Ordering information: This journal article can be ordered from
http://www.wiley.com/bw/subs.asp?ref=0022-4367
Access Statistics for this article
Journal of Risk & Insurance is currently edited by Joan T. Schmit
More articles in Journal of Risk & Insurance from The American Risk and Insurance Association Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().