MAXIMUM LIKELIHOOD ESTIMATION FOR AUTOREGRESSIVE PROCESSES DISTURBED BY A MOVING AVERAGE
Dong Wan Shin
Journal of Time Series Analysis, 1993, vol. 14, issue 6, 629-643
Abstract:
Abstract. Maximum likelihood estimation for stationary autoregressive processes when the signal is subject to a moving‐average sampling error is discussed. A modified maximum likelihood estimator is proposed. An algorithm for computing derivatives of the modified likelihood is suggested. Maximum likelihood estimators of the parameter vector are shown to be strongly consistent and to have a multivariate normal limiting distribution. A Monte Carlo simulation shows that the modified maximum likelihood estimator performs better than other available estimators. US current labour force data are analysed as an example.
Date: 1993
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.1993.tb00171.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:14:y:1993:i:6:p:629-643
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().