FORECASTING OF MULTIVARIATE PERIODIC AUTOREGRESSIVE MOVING‐AVERAGE PROCESSES
Taylan A. Ula
Journal of Time Series Analysis, 1993, vol. 14, issue 6, 645-657
Abstract:
Abstract. Minimum mean square error forecasting of multivariate autoregressive moving‐average processes with periodically varying parameters and orders is considered. General expressions are obtained for the forecasts, their errors and the covariance matrices of the forecast errors. Recursive evaluations of these quantities are shown to follow from the conditional expectation approach. Prediction ellipsoids and intervals for future values of the process are given. Update equations for the forecasts are obtained. The general results are illustrated and verified for a particular case of the process. A simulated example is given.
Date: 1993
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.1993.tb00172.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:14:y:1993:i:6:p:645-657
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().