PEAK‐INSENSITIVE NON‐PARAMETRIC SPECTRUM ESTIMATION
Rainer von Sachs
Journal of Time Series Analysis, 1994, vol. 15, issue 4, 429-452
Abstract:
Abstract. We study the problem of non‐parametric spectrum estimation of a stationary time series that might contain periodic components. In this case the periodogram ordinates have a significant amplitude at frequencies near the frequencies of the periodic components. These can be regarded as outliers in an asymptotically exponential sample. We develop a non‐parametric estimator for the spectral density that is insensitive to these outliers in the frequency domain. This is done by robustifying the usual kernel estimator (smoothed periodogram) by means of M‐estimation in the frequency domain. We propose to use data‐tapered periodograms, which yield a drastic improvement of the procedure, typically for the contaminated situation. This is both shown theoretically and supported by means of simulation. We show consistency of the resulting estimator in the general case, and asymptotic normality in the special case of a Gaussian time series, whether contamination is present or not. Finally we illustrate the finite sample performance of the estimating procedure by some simulation results and by application to the Canadian lynx trappings data.
Date: 1994
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.1994.tb00203.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:15:y:1994:i:4:p:429-452
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().