EconPapers    
Economics at your fingertips  
 

THRESHOLD VARIABLE SELECTION IN OPEN‐LOOP THRESHOLD AUTOREGRESSIVE MODELS

Rong Chen

Journal of Time Series Analysis, 1995, vol. 16, issue 5, 461-481

Abstract: Abstract. An open‐loop threshold autoregressive model is defined as The main difficulty for building such a model is that the threshold variable Zt is usually unknown. In practice, there may exist many possible candidates for the threshold variable Zt. It is difficult and tedious, if not impossible, to search for the best among all the candidates using standard model selection procedures. In this paper, we introduce a digression concept and propose two simple algorithms to classify the observations without knowing the threshold variable. The classification is then used with several graphical procedures to search for the most suitable threshold variable. Simulated and real examples are included to illustrate the proposed procedures.

Date: 1995
References: View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.1995.tb00247.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:16:y:1995:i:5:p:461-481

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jtsera:v:16:y:1995:i:5:p:461-481