THRESHOLD VARIABLE SELECTION IN OPEN‐LOOP THRESHOLD AUTOREGRESSIVE MODELS
Rong Chen
Journal of Time Series Analysis, 1995, vol. 16, issue 5, 461-481
Abstract:
Abstract. An open‐loop threshold autoregressive model is defined as The main difficulty for building such a model is that the threshold variable Zt is usually unknown. In practice, there may exist many possible candidates for the threshold variable Zt. It is difficult and tedious, if not impossible, to search for the best among all the candidates using standard model selection procedures. In this paper, we introduce a digression concept and propose two simple algorithms to classify the observations without knowing the threshold variable. The classification is then used with several graphical procedures to search for the most suitable threshold variable. Simulated and real examples are included to illustrate the proposed procedures.
Date: 1995
References: View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.1995.tb00247.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:16:y:1995:i:5:p:461-481
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().