A GENERALIZED FRACTIONALLY INTEGRATED AUTOREGRESSIVE MOVING‐AVERAGE PROCESS
Ching‐Fan Chung
Journal of Time Series Analysis, 1996, vol. 17, issue 2, 111-140
Abstract:
Abstract. This paper considers the long memory Gegenbauer autoregressive movingaverage (GARMA) process that generalizes the fractionally integrated ARMA (ARFIMA) process to allow for hyperbolic and sinusoidal decay in autocorrelations. We propose the conditional sum of squares method for estimation (which is asymptotically equivalent to the maximum likelihood estimation) and develop the asymptotic theory. Many results are in sharp contrast to those of the ARFIMA model. Simulations are conducted to assess the performance of the proposed estimators in small sample applications. Two applications to the sunspot data and the US inflation rates based on the wholesale price index are provided.
Date: 1996
References: Add references at CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.1996.tb00268.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:17:y:1996:i:2:p:111-140
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().