SPECTRAL DENSITY ESTIMATION VIA NONLINEAR WAVELET METHODS FOR STATIONARY NON‐GAUSSIAN TIME SERIES
Michael H. Neumann
Journal of Time Series Analysis, 1996, vol. 17, issue 6, 601-633
Abstract:
Abstract. In the present paper we consider nonlinear wavelet estimators of the spectral density f of a zero mean, not necessarily Gaussian, stochastic process, which is stationary in the wide sense. It is known in the case of Gaussian regression that these estimators outperform traditional linear methods if the degree of smoothness of the regression function varies considerably over the interval of interest. Such methods are based on a nonlinear treatment of empirical coefficients that arise from an orthonormal series expansion according to a wavelet basis. The main goal of this paper is to transfer these methods to spectral density estimation. This is done by showing the asymptotic normality of certain empirical coefficients based on the tapered periodogram. Using these results we can show the risk equivalence to the Gaussian case for monotone estimators based on such empirical coefficients. The resulting estimator of f keeps all interesting properties such as high spatial adaptivity that are already known for wavelet estimators in the case of Gaussian regression. It turns out that appropriately tuned versions of this estimator attain the optimal uniform rate of convergence of their L2 risk in a wide variety of Besov smoothness classes, including classes where linear estimators (kernel, spline) are not able to attain this rate. Some simulations indicate the usefulness of the new method in cases of high spatial inhomogeneity.
Date: 1996
References: Add references at CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.1996.tb00295.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:17:y:1996:i:6:p:601-633
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().