Multivariate modelling of the autoregressive random variance process
Mike K. P. So,
W. K. Li and
K. Lam
Journal of Time Series Analysis, 1997, vol. 18, issue 4, 429-446
Abstract:
The autoregressive random variance (ARV) model proposed by Taylor (Financial returns modelled by the product of two stochastic processes, a study of daily sugar prices 1961–79. In Time Series Analysis: Theory and Practice 1 (ed. O. D. Anderson). Amsterdam: North‐Holland, 1982, pp. 203–26) is useful in modelling stochastic changes in the variance structure of a time series. In this paper we focus on a general multivariate ARV model. A traditional EM algorithm is derived as the estimation method. The proposed EM approach is simple to program, computationally efficient and numerically well behaved. The asymptotic variance‐‐covariance matrix can be easily computed as a by‐product using a well‐kno wn asymptotic result for extremum estimators. A result that is of interest in itself is that the dimension of the augmented state space form used in computing the variance–covariance matrix can be shown to be greatly reduced, resulting in greater computational efficiency . The multivariate ARV model considered here is useful in studying the lead–lag (causality) relationship of the variance structure across different time series. As an example, the leading effect of Thailand on Malaysia in terms of vari ance changes in the stock indices is demonstrated.
Date: 1997
References: Add references at CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
https://doi.org/10.1111/1467-9892.00060
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:18:y:1997:i:4:p:429-446
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().