On Bartlett’s Formula for Non‐linear Processes
Alain Berlinet and
Christian Francq
Journal of Time Series Analysis, 1997, vol. 18, issue 6, 535-552
Abstract:
Bartlett’s formula is widely used in time series analysis to provide estimates of the asymptotic covariance between sample autocovariances. However, it is derived under precise assumptions (namely linearity of the underlying process and vanishing of its fourth‐order cumulants) and effectiv e computations show that the value given by this formula can deviate markedly from the true asymptotic covariance when the requirements on the underlying process are not satisfied. This is the case for a large class of models, for instance bilinear and autoregressive conditionally heteroscedastic processes. For these reasons we investigate the behaviour of smoothed empirical estimates of the covariance between two sample autocovariance s. We prove L2 and strong consistency for strongly mixing stationary processes and define for the covariance matrix of a vector of sample autocovariances a consistent estimate which is a non‐negative definite matrix. The choice of the parameters is discussed, applications are given and comparisons are made through a simulation study
Date: 1997
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/1467-9892.00067
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:18:y:1997:i:6:p:535-552
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().