Recursive Prediction and Likelihood Evaluation for Periodic ARMA Models
Robert Lund and
I. V. Basawa
Journal of Time Series Analysis, 2000, vol. 21, issue 1, 75-93
Abstract:
This paper explores recursive prediction and likelihood evaluation techniques for periodic autoregressive moving‐average (PARMA) time series models. The innovations algorithm is used to develop a simple recursive scheme for computing one‐step‐ahead predictors and their mean squared errors. The asymptotic form of this recursion is explored. The prediction results are then used to develop an efficient (and exact) PARMA likelihood evaluation algorithm for Gaussian series. We then show how a multivariate autoregressive moving average (ARMA) likelihood can be evaluated by writing the multivariate ARMA model in PARMA form. Explicit calculations for PARMA(1, 1) models and periodic autoregressions are included.
Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
https://doi.org/10.1111/1467-9892.00174
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:21:y:2000:i:1:p:75-93
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().