An Efficient Taper for Potentially Overdifferenced Long‐memory Time Series
Clifford Hurvich and
Willa W. Chen
Journal of Time Series Analysis, 2000, vol. 21, issue 2, 155-180
Abstract:
We propose a new complex‐valued taper and derive the properties of a tapered Gaussian semiparametric estimator of the long‐memory parameter dε (−0.5, 1.5). The estimator and its accompanying theory can be applied to generalized unit root testing. In the proposed method, the data are differenced once before the taper is applied. This guarantees that the tapered estimator is invariant with respect to deterministic linear trends in the original series. Any detrimental leakage effects due to the potential noninvertibility of the differenced series are strongly mitigated by the taper. The proposed estimator is shown to be more efficient than existing invariant tapered estimators. Invariance to kth order polynomial trends can be attained by differencing the data k times and then applying a stronger taper, which is given by the kth power of the proposed taper. We show that this new family of tapers enjoys strong efficiency gains over comparable existing tapers. Analysis of both simulated and actual data highlights potential advantages of the tapered estimator of d compared with the nontapered estimator.
Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
https://doi.org/10.1111/1467-9892.00179
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:21:y:2000:i:2:p:155-180
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().