On Kay's Frequency Estimator
B. G. Quinn
Journal of Time Series Analysis, 2000, vol. 21, issue 6, 707-712
Abstract:
Kay has proposed a technique for estimating the frequency of a complex sinusoid in additive noise, the real and imaginary parts of which are independent and normally distributed with means zero and the same variance. For fixed sample size the estimator achieves the Cramer–Rao lower bound for unbiased estimators of the frequency in the limit as the signal to noise ratio approaches infinity. It has been noted by Lovell and Williamson, however, that the estimator is biased. It is shown in this paper that under Kay's assumptions the estimator is not consistent (for fixed signal to noise ratio the estimator converges almost surely, as the sample size N increases, to a number that is not the true frequency, no matter how large the signal to noise ratio). A class of distributions for the additive noise is proposed under which the technique is strongly consistent and has the correct order of asymptotic variance, namely N−3, for the case where there is some a priori knowledge concerning the range of the frequency. For this class a normal central limit theorem is developed.
Date: 2000
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/1467-9892.00205
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:21:y:2000:i:6:p:707-712
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().