Time‐varying autoregressions with model order uncertainty
Raquel Prado and
Gabriel Huerta
Journal of Time Series Analysis, 2002, vol. 23, issue 5, 599-618
Abstract:
We explore some aspects of the analysis of latent component structure in non‐stationary time series based on time‐varying autoregressive (TVAR) models that incorporate uncertainty on model order. Our modelling approach assumes that the AR coefficients evolve in time according to a random walk and that the model order may also change in time following a discrete random walk. In addition, we use a conjugate prior structure on the autoregressive coefficients and a discrete uniform prior on model order. Simulation from the posterior distribution of the model parameters can be obtained via standard forward filtering backward simulation algorithms. Aspects of implementation and inference on decompositions, latent structure and model order are discussed for a synthetic series and for an electroencephalogram (EEG) trace previously analysed using fixed order TVAR models.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1111/1467-9892.00280
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:23:y:2002:i:5:p:599-618
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().