On the efficacy of simulated maximum likelihood for estimating the parameters of stochastic differential Equations
Stan Hurn,
K. A. Lindsay and
Vance Martin
Journal of Time Series Analysis, 2003, vol. 24, issue 1, 45-63
Abstract:
Abstract. A method for estimating the parameters of stochastic differential equations (SDEs) by simulated maximum likelihood is presented. This method is feasible whenever the underlying SDE is a Markov process. Estimates are compared to those generated by indirect inference, discrete and exact maximum likelihood. The technique is illustrated with reference to a one‐factor model of the term structure of interest rates using 3‐month US Treasury Bill data.
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
https://doi.org/10.1111/1467-9892.00292
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:24:y:2003:i:1:p:45-63
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().