EconPapers    
Economics at your fingertips  
 

Non‐Gaussian Filter and Smoother Based on the Pearson Distribution System

Yuichi Nagahara

Journal of Time Series Analysis, 2003, vol. 24, issue 6, 721-738

Abstract: The Pearson distribution system can represent wide class of distributions with various skewness and kurtosis. We develop a practical approach of using all types of its distribution system including the type‐IV distribution which was difficult to implement. We propose an easily implemented algorithm which uses less‐memory and performs at a higher speed than other typical methods: using analytic approximation of successive conditional probability density functions for prediction and filtering by the Pearson distribution system in the case of both the system and observation noise being one‐dimensional. By using the approximated probability density function and the numerical integration, we obtain mean, variance, skewness and kurtosis of the next distribution. We decide the next approximated distribution from the Pearson distribution system. We adopt these steps for the prediction, filtering and smoothing recursively. Our framework makes it possible to construct time series models with various noise distributions. We apply our non‐Gaussian filter to the estimation of non‐Gaussian stochastic volatility models of the stock returns. We compare our method with the typical method.

Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2003.00331.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:24:y:2003:i:6:p:721-738

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jtsera:v:24:y:2003:i:6:p:721-738