EconPapers    
Economics at your fingertips  
 

Kernel matching scheme for block bootstrap of time series data

Tae Yoon Kim and Sun Young Hwang

Journal of Time Series Analysis, 2004, vol. 25, issue 2, 199-216

Abstract: Abstract. The block bootstrap for time series consists in randomly resampling blocks of the original data with replacement and aligning these blocks into a bootstrap sample. Recently several matching schemes for the block bootstraps have been suggested to improve its performance by reduction of bias [Bernoulli 4 (1998), 305]. The matching schemes are usually achieved by aligning with higher likelihood those blocks which match at their ends. The kernel matching scheme we consider here takes some of the dependence structure of the data into account and is based on a kernel estimate of the conditional lag one distribution. In this article transition probabilities of the kernel matching scheme are investigated in detail by concentrating on a simple case. Our results here discuss theoretical properties of the transition probability matrix including ergodicity, which shows the potential of the matching scheme for bias reduction.

Date: 2004
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1046/j.0143-9782.2003.00345.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:25:y:2004:i:2:p:199-216

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jtsera:v:25:y:2004:i:2:p:199-216