Computation of asymmetric signal extraction filters and mean squared error for ARIMA component models
William R. Bell and
Donald E. K. Martin
Journal of Time Series Analysis, 2004, vol. 25, issue 4, 603-623
Abstract:
Abstract. Standard signal extraction results for both stationary and nonstationary time series are expressed as linear filters applied to the observed series. Computation of the filter weights, and of the corresponding frequency response function, is relevant for studying properties of the filter and of the resulting signal extraction estimates. Methods for doing such computations for symmetric, doubly infinite filters are well established. This study develops an algorithm for computing filter weights for asymmetric, semi‐infinite signal extraction filters, including the important case of the concurrent filter (for signal extraction at the current time point). The setting is where the time series components being estimated follow autoregressive integrated moving‐average (ARIMA) models. The algorithm provides expressions for the asymmetric signal extraction filters as rational polynomial functions of the backshift operator. The filter weights are then readily generated by simple expansion of these expressions, and the corresponding frequency response function is directly evaluated. Recursive expressions are also developed that relate the weights for filters that use successively increasing amounts of data. The results for the filter weights are then used to develop methods for computing mean squared error results for the asymmetric signal extraction estimates.
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2004.01920.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:25:y:2004:i:4:p:603-623
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().