EconPapers    
Economics at your fingertips  
 

Error bounds and asymptotic expansions for toeplitz product functionals of unbounded spectra

Offer Lieberman and Peter Phillips

Journal of Time Series Analysis, 2004, vol. 25, issue 5, 733-753

Abstract: Abstract. This paper establishes error orders for integral limit approximations to traces of powers (to the pth order) of products of Toeplitz matrices. Such products arise frequently in the analysis of stationary time series and in the development of asymptotic expansions. The elements of the matrices are Fourier transforms of functions which we allow to be bounded, unbounded, or even to vanish on [−π, π], thereby including important cases such as the spectral functions of fractional processes. Error rates are also given in the case in which the matrix product involves inverse matrices. The rates are sharp up to an arbitrarily small ɛ > 0. The results improve on the o(1) rates obtained in earlier work for analogous products. For the p = 1 case, an explicit second‐order asymptotic expansion is found for a quadratic functional of the autocovariance sequences of stationary long‐memory time series. The order of magnitude of the second term in this expansion is shown to depend on the long‐memory parameters. It is demonstrated that the pole in the first‐order approximation is removed by the second‐order term, which provides a substantially improved approximation to the original functional.

Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2004.01904.x

Related works:
Working Paper: Error Bounds and Asymptotic Expansions for Toeplitz Product Functionals of Unbounded Spectra (2002) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:25:y:2004:i:5:p:733-753

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:bla:jtsera:v:25:y:2004:i:5:p:733-753