Robust and powerful serial correlation tests with new robust estimates in ARX models
Pierre Duchesne ()
Journal of Time Series Analysis, 2005, vol. 26, issue 1, 49-81
Abstract:
Abstract. We consider robust serial correlation tests in autoregressive models with exogenous variables (ARX). Since the least squares estimators are not robust when outliers are present, a new family of estimators is introduced, called residual autocovariances for ARX (RA‐ARX). They provide resistant estimators that are less sensible to abnormal observations in the output variable of the dynamic model. Such ‘bad’ observations could be due to unexpected phenomena such as economic crisis or equipment failure in engineering, among others. We show that the new robust estimators are consistent and we can consider robust and powerful tests of serial correlation in ARX models based on these estimators. The new one‐sided tests of serial correlation are obtained in extending Hong's (1996) approach in a framework resistant to outliers. They are based on a weighted sum of robust squared residual autocorrelations and on any robust and n1/2‐consistent estimators. Our approach generalizes Li's (1988) test statistic, that can be interpreted as a test using the truncated uniform kernel. However, many kernels deliver a higher power. This is confirmed in a simulation study, where we investigate the finite sample properties of the new robust serial correlation tests in comparison to some commonly used robust and non‐robust tests.
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2005.00390.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:26:y:2005:i:1:p:49-81
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().