EconPapers    
Economics at your fingertips  
 

Semiparametric Estimation in Time‐Series Regression with Long‐Range Dependence

Morten Nielsen

Journal of Time Series Analysis, 2005, vol. 26, issue 2, 279-304

Abstract: Abstract. We consider semiparametric estimation in time‐series regression in the presence of long‐range dependence in both the errors and the stochastic regressors. A central limit theorem is established for a class of semiparametric frequency domain‐weighted least squares estimates, which includes both narrow‐band ordinary least squares and narrow‐band generalized least squares as special cases. The estimates are semiparametric in the sense that focus is on the neighbourhood of the origin, and only periodogram ordinates in a degenerating band around the origin are used. This setting differs from earlier studies on time‐series regression with long‐range dependence, where a fully parametric approach has been employed. The generalized least squares estimate is infeasible when the degree of long‐range dependence is unknown and must be estimated in an initial step. In that case, we show that a feasible estimate which has the same asymptotic properties as the infeasible estimate, exists. By Monte Carlo simulation, we evaluate the finite‐sample performance of the generalized least squares estimate and the feasible estimate.

Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2005.00401.x

Related works:
Working Paper: Semiparametric Estimation in Time Series Regression with Long Range Dependence Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:26:y:2005:i:2:p:279-304

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-04-05
Handle: RePEc:bla:jtsera:v:26:y:2005:i:2:p:279-304