Testing the Fit of a Vector Autoregressive Moving Average Model
Efstathios Paparoditis
Journal of Time Series Analysis, 2005, vol. 26, issue 4, 543-568
Abstract:
Abstract. A new procedure for testing the fit of multivariate time series model is proposed. The method evaluates in a certain way the closeness of the sample spectral density matrix of the observed process to the spectral density matrix of the parametric model postulated under the null and uses for this purpose nonparametric estimation techniques. The asymptotic distribution of the test statistic is established and an alternative, bootstrap‐based method is developed in order to estimate more accurately this distribution under the null hypothesis. Goodness‐of‐fit diagnostics useful in understanding the test results and identifying sources of model inadequacy are introduced. The applicability of the testing procedure and its capability to detect lacks of fit is demonstrated by means of some real data examples.
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2005.00419.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:26:y:2005:i:4:p:543-568
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().