Using the Penalized Likelihood Method for Model Selection with Nuisance Parameters Present only under the Alternative: An Application to Switching Regression Models
Arie Preminger and
David Wettstein ()
Journal of Time Series Analysis, 2005, vol. 26, issue 5, 715-741
Abstract:
Abstract. We study the problem of model selection with nuisance parameters present only under the alternative. The common approach for testing in this case is to determine the true model through the use of some functionals over the nuisance parameters space. Since in such cases the distribution of these statistics is not known, critical values had to be approximated usually through computationally intensive simulations. Furthermore, the computed critical values are data and model dependent and hence cannot be tabulated. We address this problem by using the penalized likelihood method to choose the correct model. We start by viewing the likelihood ratio as a function of the unidentified parameters. By using the empirical process theory and the uniform law of the iterated logarithm (LIL) together with sufficient conditions on the penalty term, we derive the consistency properties of this method. Our approach generates a simple and consistent procedure for model selection. This methodology is presented in the context of switching regression models. We also provide some Monte Carlo simulations to analyze the finite sample performance of our procedure.
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2005.00443.x
Related works:
Working Paper: Using the penalized likelihood method for model selection with nuisance parameters present only under the alternative: an application to switching regression models (2005)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:26:y:2005:i:5:p:715-741
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().