An Approximate Innovation Method For The Estimation Of Diffusion Processes From Discrete Data
J. C. Jimenez and
T. Ozaki
Journal of Time Series Analysis, 2006, vol. 27, issue 1, 77-97
Abstract:
Abstract. In this paper, an approximate innovation method is introduced for the estimation of diffusion processes, given a set of discrete and noisy observations of some of their components. The method is based on a recent extension of local linearization filters to the general case of continuous–discrete state–space models with multiplicative noise. This filtering method provides adequate approximations for the prediction and filter estimates that are required by the innovation method in the estimation of the unknown parameters and the unobserved component of the diffusion process. The performance of approximate innovation estimators is illustrated by means of numerical simulations.
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2005.00454.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:27:y:2006:i:1:p:77-97
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().