Impact of the Sampling Rate on the Estimation of the Parameters of Fractional Brownian Motion
Zhengyuan Zhu and
Murad S. Taqqu
Journal of Time Series Analysis, 2006, vol. 27, issue 3, 367-380
Abstract:
Abstract. Fractional Brownian motion is a mean‐zero self‐similar Gaussian process with stationary increments. Its covariance depends on two parameters, the self‐similar parameter H and the variance C. Suppose that one wants to estimate optimally these parameters by using n equally spaced observations. How should these observations be distributed? We show that the spacing of the observations does not affect the estimation of H (this is due to the self‐similarity of the process), but the spacing does affect the estimation of the variance C. For example, if the observations are equally spaced on [0, n] (unit‐spacing), the rate of convergence of the maximum likelihood estimator (MLE) of the variance C is . However, if the observations are equally spaced on [0, 1] (1/n‐spacing), or on [0, n2] (n‐spacing), the rate is slower, . We also determine the optimal choice of the spacing Δ when it is constant, independent of the sample size n. While the rate of convergence of the MLE of C is in this case, irrespective of the value of Δ, the value of the optimal spacing depends on H. It is 1 (unit‐spacing) if H = 1/2 but is very large if H is close to 1.
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2005.00470.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:27:y:2006:i:3:p:367-380
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().