A Generalized Portmanteau Test For Independence Of Two Infinite‐Order Vector Autoregressive Series
Chafik Bouhaddioui and
Roch Roy
Journal of Time Series Analysis, 2006, vol. 27, issue 4, 505-544
Abstract:
Abstract. In many situations, we want to verify the existence of a relationship between multivariate time series. Here, we propose a semiparametric approach for testing the independence between two infinite‐order vector autoregressive (VAR(∞)) series, which is an extension of Hong's [Biometrika (1996c) vol. 83, 615–625] univariate results. We first filter each series by a finite‐order autoregression and the test statistic is a standardized version of a weighted sum of quadratic forms in the residual cross‐correlation matrices at all possible lags. The weights depend on a kernel function and on a truncation parameter. Using a result of Lewis and Reinsel [Journal of Multivariate Analysis (1985) Vol. 16, pp. 393–411], the asymptotic distribution of the test statistic is derived under the null hypothesis and its consistency is also established for a fixed alternative of serial cross‐correlation of unknown form. Apart from standardization factors, the multivariate portmanteau statistic proposed by Bouhaddioui and Roy [Statistics and Probability Letters (2006) vol. 76, pp. 58–68] that takes into account a fixed number of lags can be viewed as a special case by using the truncated uniform kernel. However, many kernels lead to a greater power, as shown in an asymptotic power analysis and by a small simulation study in finite samples. A numerical example with real data is also presented.
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2006.00473.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:27:y:2006:i:4:p:505-544
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().