EconPapers    
Economics at your fingertips  
 

A Note on Non‐Negative Arma Processes

Henghsiu Tsai () and K. S. Chan

Journal of Time Series Analysis, 2007, vol. 28, issue 3, 350-360

Abstract: Abstract. Recently, there has been much research on developing models suitable for analysing the volatility of a discrete‐time process. Since the volatility process, like many others, is necessarily non‐negative, there is a need to construct models for stationary processes which are non‐negative with probability one. Such models can be obtained by driving autoregressive moving average (ARMA) processes with non‐negative kernel by non‐negative white noise. This raises the problem of finding simple conditions under which an ARMA process with given coefficients has a non‐negative kernel. In this article, we derive a necessary and sufficient condition. This condition is in terms of the generating function of the ARMA kernel which has a simple form. Moreover, we derive some readily verifiable necessary and sufficient conditions for some ARMA processes to be non‐negative almost surely.

Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2006.00513.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:28:y:2007:i:3:p:350-360

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jtsera:v:28:y:2007:i:3:p:350-360