Multivariate Portmanteau Test For Autoregressive Models with Uncorrelated but Nonindependent Errors
Christian Francq and
Hamdi Raïssi
Journal of Time Series Analysis, 2007, vol. 28, issue 3, 454-470
Abstract:
Abstract. We study the asymptotic behaviour of the least squares estimator, of the residual autocorrelations and of the Ljung–Box (or Box–Pierce) portmanteau test statistic for multiple autoregressive time series models with nonindependent innovations. Under mild assumptions, it is shown that the asymptotic distribution of the portmanteau tests is that of a weighted sum of independent chi‐squared random variables. When the innovations exhibit conditional heteroscedasticity or other forms of dependence, this asymptotic distribution can be quite different from that of models with independent and identically distributed innovations. Consequently, the usual chi‐squared distribution does not provide an adequate approximation to the distribution of the Box–Pierce goodness‐of‐fit portmanteau test in the presence of nonindependent innovations. Hence we propose a method to adjust the critical values of the portmanteau tests. Monte carlo experiments illustrate the finite sample performance of the modified portmanteau test.
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2006.00521.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:28:y:2007:i:3:p:454-470
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().