The Periodogram of fractional processes1
Carlos Velasco
Journal of Time Series Analysis, 2007, vol. 28, issue 4, 600-627
Abstract:
Abstract. We analyse asymptotic properties of the discrete Fourier transform and the periodogram of time series obtained through (truncated) linear filtering of stationary processes. The class of filters contains the fractional differencing operator and its coefficients decay at an algebraic rate, implying long‐range‐dependent properties for the filtered processes when the degree of integration α is positive. These include fractional time series which are nonstationary for any value of the memory parameter (α ≠ 0) and possibly nonstationary trending (α ≥ 0.5). We consider both fractional differencing or integration of weakly dependent and long‐memory stationary time series. The results obtained for the moments of the Fourier transform and the periodogram at Fourier frequencies in a degenerating band around the origin are weaker compared with the stationary nontruncated case for α > 0, but sufficient for the analysis of parametric and semiparametric memory estimates. They are applied to the study of the properties of the log‐periodogram regression estimate of the memory parameter α for Gaussian processes, for which asymptotic normality could not be showed using previous results. However, only consistency can be showed for the trending cases, 0.5 ≤ α
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2006.00527.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:28:y:2007:i:4:p:600-627
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().