State space models for time series with patches of unusual observations
Jeremy Penzer
Journal of Time Series Analysis, 2007, vol. 28, issue 5, 629-645
Abstract:
Abstract. An alternative to leave‐k‐out diagnostics for detecting patches of outlying points in time series is developed. We propose that unusual behaviour should be modelled by the addition of shocks. By including shocks in the transition equation of a state space model, we admit the possibility of a persistent change associated with a patch of outliers. Persistent change may take the form of a level shift or a change in seasonal pattern. We provide an efficient mechanism for computing diagnostic statistics associated with the addition of k shocks using a simple adaptation of the Kalman filter. Statistics for detecting unspecified patterns of shocks and an interpretation of the output of the associated smoothing algorithm are derived. Illustrations using real series are given.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2007.00525.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:28:y:2007:i:5:p:629-645
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().