Bootstrapping the Local Periodogram of Locally Stationary Processes
Marios Sergides and
Efstathios Paparoditis
Journal of Time Series Analysis, 2008, vol. 29, issue 2, 264-299
Abstract:
Abstract. Locally stationary processes are non‐stationary stochastic processes the second‐order structure of which varies smoothly over time. In this paper, we develop a method to bootstrap the local periodogram of a locally stationary process. Our method generates pseudo local periodogram ordinates by combining a parametric time and non‐parametric frequency domain bootstrap approach. We first fit locally a time varying autoregressive model so as to capture the essential characteristics of the underlying process. A locally calculated non‐parametric correction in the frequency domain is then used so as to improve upon the locally parametric autoregressive fit. As an application, we investigate theoretically the asymptotic properties of the bootstrap method proposed applied to the class of local spectral means, local ratio statistics and local spectral density estimators. Some simulations demonstrate the ability of our method to give accurate estimates of the quantities of interest in finite sample situations and an application to a real‐life data‐set is presented.
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2007.00556.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:29:y:2008:i:2:p:264-299
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().