Portmanteau tests for ARMA models with infinite variance
J.‐W. Lin and
A. I. McLeod
Journal of Time Series Analysis, 2008, vol. 29, issue 3, 600-617
Abstract:
Abstract. Autoregressive and moving‐average (ARMA) models with stable Paretian errors are some of the most studied models for time series with infinite variance. Estimation methods for these models have been studied by many researchers but the problem of diagnostic checking of fitted models has not been addressed. In this article, we develop portmanteau tests for checking the randomness of a time series with infinite variance and for ARMA diagnostic checking when the innovations have infinite variance. It is assumed that least squares or an asymptotically equivalent estimation method, such as Gaussian maximum likelihood, is used. It is also assumed that the distribution of the innovations is identically and independently distributed (i.i.d.) stable Paretian. It is seen via simulation that the proposed portmanteau tests do not converge well to the corresponding limiting distributions for practical series length so a Monte Carlo test is suggested. Simulation experiments show that the proposed Monte Carlo test procedure works effectively. Two illustrative applications to actual data are provided to demonstrate that an incorrect conclusion may result if the usual portmanteau test based on the finite variance assumption is used.
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2007.00572.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:29:y:2008:i:3:p:600-617
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().