EconPapers    
Economics at your fingertips  
 

Identification of Persistent Cycles in Non‐Gaussian Long‐Memory Time Series

Mohamed Boutahar

Journal of Time Series Analysis, 2008, vol. 29, issue 4, 653-672

Abstract: Abstract. Asymptotic distribution is derived for the least squares estimates (LSE) in the unstable AR(p) process driven by a non‐Gaussian long‐memory disturbance. The characteristic polynomial of the autoregressive process is assumed to have pairs of complex roots on the unit circle. In order to describe the limiting distribution of the LSE, two limit theorems involving long‐memory processes are established in this article. The first theorem gives the limiting distribution of the weighted sum, is a non‐Gaussian long‐memory moving‐average process and (cn,k,1 ≤ k ≤ n) is a given sequence of weights; the second theorem is a functional central limit theorem for the sine and cosine Fourier transforms

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2008.00576.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:29:y:2008:i:4:p:653-672

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jtsera:v:29:y:2008:i:4:p:653-672