EconPapers    
Economics at your fingertips  
 

An Extended Portmanteau Test for VARMA Models With Mixing Nonlinear Constraints

Ignacio Arbués

Journal of Time Series Analysis, 2008, vol. 29, issue 5, 741-761

Abstract: Abstract. The portmanteau test is a widely used diagnostic tool for univariate and multivariate time‐series models. Its asymptotic distribution is known for the unconstrained vector autoregressive moving‐average (VARMA) case and for VAR models with constraints on the autoregressive coefficients. In this article, we give conditions under which the test can be applied to constrained VARMA models. Unfortunately, it cannot generally be applied to models with constraints that simultaneously affect the ARMA polynomial coefficients and the covariance matrix of the innovations (mixing constraints). This happens in latent‐variable models such as dynamic factor models (DFM). In addition, when there are constraints on the covariance matrix it seems convenient to check the goodness of fit using the zero‐lag residual covariances. We propose an extended portmanteau test that not only checks the autocorrelations of the residuals but also whether their covariance matrix is consistent with the constraints. We prove that the statistic is asymptotically distributed as a chi‐square for ARMA models under the assumption that the innovations have Gaussian‐like fourth‐order moments. We also show that the test is appropriate for the DFM, Peña–Box model and factor‐structural vector autoregression (FSVAR).

Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2008.00573.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:29:y:2008:i:5:p:741-761

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2024-12-28
Handle: RePEc:bla:jtsera:v:29:y:2008:i:5:p:741-761