EconPapers    
Economics at your fingertips  
 

Fitting Stochastic Volatility Models in the Presence of Irregular Sampling via Particle Methods and the EM Algorithm

Jeongeun Kim and David S. Stoffer

Journal of Time Series Analysis, 2008, vol. 29, issue 5, 811-833

Abstract: Abstract. Stochastic volatility (SV) models have become increasingly popular for explaining the behaviour of financial variables such as stock prices and exchange rates, and their popularity has resulted in several different proposed approaches to estimating the parameters of the model. An important feature of financial data, which is commonly ignored, is the occurrence of irregular sampling because of holidays or unexpected events. We present a method that can handle the estimation problem of SV models when the sampling is somewhat irregular. The basic idea of our approach is to combine the expectation‐maximization (EM) algorithm with particle filters and smoothers in order to estimate parameters of the model. In addition, we expand the scope of application of SV models by adopting a normal mixture, with unknown parameters, for the observational error term rather than assuming a log‐chi‐squared distribution. We address the problems by using state–space models and imputation. Finally, we present simulation studies and real data analyses to establish the viability of the proposed method.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2008.00584.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:29:y:2008:i:5:p:811-833

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782

Access Statistics for this article

Journal of Time Series Analysis is currently edited by M.B. Priestley

More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jtsera:v:29:y:2008:i:5:p:811-833