Nonlinear ARMA models with functional MA coefficients
Hai‐Bin Wang
Journal of Time Series Analysis, 2008, vol. 29, issue 6, 1032-1056
Abstract:
Abstract. In the present article, we propose and study a new class of nonlinear autoregressive moving‐average (ARMA) models, in which each moving‐average (MA) coefficient is enlarged to an arbitrary univariate function. We first provide a sufficient condition for the existence of the stationary solution and further discuss the moment structure. We investigate the estimation method to the proposed models. The global estimates of parameters and local linear estimates of functional coefficients are obtained by using a back‐fitting algorithm. For testing whether the functional coefficients are some specified parametric forms, a bootstrap test approach is provided. The proposed models are illustrated by both simulated and real data examples.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2008.00594.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:29:y:2008:i:6:p:1032-1056
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().