Bootstrapping confidence intervals for the change‐point of time series
Marie Hušková and
Claudia Kirch
Journal of Time Series Analysis, 2008, vol. 29, issue 6, 947-972
Abstract:
Abstract. We study an at‐most‐one‐change time‐series model with an abrupt change in the mean and dependent errors that fulfil certain mixing conditions. We obtain confidence intervals for the unknown change‐point via bootstrapping methods. Precisely, we use a block bootstrap of the estimated centred error sequence. Then, we reconstruct a sequence with a change in the mean using the same estimators as before. The difference between the change‐point estimator of the resampled sequence and the one of the original sequence can be used as an approximation of the difference between the real change‐point and its estimator. This enables us to construct confidence intervals using the empirical distribution of the resampled time series. A simulation study shows that the resampled confidence intervals are usually closer to their target levels and at the same time smaller than the asymptotic intervals.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9892.2008.00589.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jtsera:v:29:y:2008:i:6:p:947-972
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0143-9782
Access Statistics for this article
Journal of Time Series Analysis is currently edited by M.B. Priestley
More articles in Journal of Time Series Analysis from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().